524 research outputs found

    Hematopoietic Stem and Progenitor Cells as Effectors in Innate Immunity

    Get PDF
    Recent research has shed light on novel functions of hematopoietic stem and progenitor cells (HSPC). While they are critical for maintenance and replenishment of blood cells in the bone marrow, these cells are not limited to the bone marrow compartment and function beyond their role in hematopoiesis. HSPC can leave bone marrow and circulate in peripheral blood and lymph, a process often manipulated therapeutically for the purpose of transplantation. Additionally, these cells preferentially home to extramedullary sites of inflammation where they can differentiate to more mature effector cells. HSPC are susceptible to various pathogens, though they may participate in the innate immune response without being directly infected. They express pattern recognition receptors for detection of endogenous and exogenous danger-associated molecular patterns and respond not only by the formation of daughter cells but can themselves secrete powerful cytokines. This paper summarizes the functional and phenotypic characterization of HSPC, their niche within and outside of the bone marrow, and what is known regarding their role in the innate immune response

    Horses with equine recurrent uveitis have an activated CD4+ T-cell phenotype that can be modulated by mesenchymal stem cells in vitro.

    Get PDF
    Equine recurrent uveitis (ERU) is an immune-mediated disease causing repeated or persistent inflammatory episodes which can lead to blindness. Currently, there is no cure for horses with this disease. Mesenchymal stem cells (MSCs) are effective at reducing immune cell activation in vitro in many species, making them a potential therapeutic option for ERU. The objectives of this study were to define the lymphocyte phenotype of horses with ERU and to determine how MSCs alter T-cell phenotype in vitro. Whole blood was taken from 7 horses with ERU and 10 healthy horses and peripheral blood mononuclear cells were isolated. The markers CD21, CD3, CD4, and CD8 were used to identify lymphocyte subsets while CD25, CD62L, Foxp3, IFNγ, and IL10 were used to identify T-cell phenotype. Adipose-derived MSCs were expanded, irradiated (to control proliferation), and incubated with CD4+ T-cells from healthy horses, after which lymphocytes were collected and analyzed via flow cytometry. The percentages of T-cells and B-cells in horses with ERU were similar to normal horses. However, CD4+ T-cells from horses with ERU expressed higher amounts of IFNγ indicating a pro-inflammatory Th1 phenotype. When co-incubated with MSCs, activated CD4+ T-cells reduced expression of CD25, CD62L, Foxp3, and IFNγ. MSCs had a lesser ability to decrease activation when cell-cell contact or prostaglandin signaling was blocked. MSCs continue to show promise as a treatment for ERU as they decreased the CD4+ T-cell activation phenotype through a combination of cell-cell contact and prostaglandin signaling

    Energy relaxation pathways between light-matter states revealed by coherent two-dimensional spectroscopy

    Get PDF
    Coupling matter excitations to electromagnetic modes inside nano-scale optical resonators leads to the formation of hybrid light-matter states, so-called polaritons, allowing the controlled manipulation of material properties. Here, we investigate the photo-induced dynamics of a prototypical strongly-coupled molecular exciton-microcavity system using broadband two-dimensional Fourier transform spectroscopy and unravel the mechanistic details of its ultrafast photo-induced dynamics. We find evidence for a direct energy relaxation pathway from the upper to the lower polariton state that initially bypasses the excitonic manifold of states, which is often assumed to act as an intermediate energy reservoir, under certain experimental conditions. This observation provides new insight into polariton photophysics and could potentially aid the development of applications that rely on controlling the energy relaxation mechanism, such as in solar energy harvesting, manipulating chemical reactivity, the creation of Bose–Einstein condensates and quantum computing

    Spectroscopy of infrared-active phonons in high-temperature superconductors

    Get PDF
    For a large variety of superconducting materials both experimental and theoretical lattice dynamical studies have been performed to date. The assignment of the observed infrared- and Raman-active phonon modes to the particular lattice eigenmodes is generally accepted. We will concentrate here upon the analysis of the changes of the infrared-phonon parameters (frequency and linewidth) upon entering the superconducting state which, as will be shown, may provide information on the magnitude of the superconductivity-related gap and its dependence on the superconducting transition temperature Tc

    Allogeneic Mesenchymal Stem Cell Treatment Induces Specific Alloantibodies in Horses

    Get PDF
    Background. It is unknown whether horses that receive allogeneic mesenchymal stem cells (MSCs) injections develop specific humoral immune response. Our goal was to develop and validate a flow cytometric MSC crossmatch procedure and to determine if horses that received allogeneic MSCs in a clinical setting developed measurable antibodies following MSC administration. Methods. Serum was collected from a total of 19 horses enrolled in 3 different research projects. Horses in the 3 studies all received unmatched allogeneic MSCs. Bone marrow (BM) or adipose tissue derived MSCs (ad-MSCs) were administered via intravenous, intra-arterial, intratendon, or intraocular routes. Anti-MSCs and anti-bovine serum albumin antibodies were detected via flow cytometry and ELISA, respectively. Results. Overall, anti-MSC antibodies were detected in 37% of the horses. The majority of horses (89%) were positive for anti-bovine serum albumin (BSA) antibodies prior to and after MSC injection. Finally, there was no correlation between the amount of anti-BSA antibody and the development of anti-MSC antibodies. Conclusion. Anti allo-MSC antibody development was common; however, the significance of these antibodies is unknown. There was no correlation between either the presence or absence of antibodies and the percent antibody binding to MSCs and any adverse reaction to a MSC injection

    Allogeneic Stem Cells Alter Gene Expression and Improve Healing of Distal Limb Wounds in Horses.

    Get PDF
    Distal extremity wounds are a significant clinical problem in horses and humans and may benefit from mesenchymal stem cell (MSC) therapy. This study evaluated the effects of direct wound treatment with allogeneic stem cells, in terms of gross, histologic, and transcriptional features of healing. Three full-thickness cutaneous wounds were created on each distal forelimb in six healthy horses, for a total of six wounds per horse. Umbilical cord-blood derived equine MSCs were applied to each wound 1 day after wound creation, in one of four forms: (a) normoxic- or (b) hypoxic-preconditioned cells injected into wound margins, or (c) normoxic- or (d) hypoxic-preconditioned cells embedded in an autologous fibrin gel and applied topically to the wound bed. Controls were one blank (saline) injected wound and one blank fibrin gel-treated wound per horse. Data were collected weekly for 6 weeks and included wound surface area, thermography, gene expression, and histologic scoring. Results indicated that MSC treatment by either delivery method was safe and improved histologic outcomes and wound area. Hypoxic-preconditioning did not offer an advantage. MSC treatment by injection resulted in statistically significant increases in transforming growth factor beta and cyclooxygenase-2 expression at week 1. Histologically, significantly more MSC-treated wounds were categorized as pro-healing than pro-inflammatory. Wound area was significantly affected by treatment: MSC-injected wounds were consistently smaller than gel-treated or control wounds. In conclusion, MSC therapy shows promise for distal extremity wounds in horses, particularly when applied by direct injection into the wound margin. Stem Cells Translational Medicine 2018;7:98-108

    Clusterin/Apolipoprotein J immunoreactivity is associated with white matter damage in cerebral small vessel diseases

    Get PDF
    Aim: Brain clusterin is known to be associated with the amyloid‐β deposits in Alzheimer's disease (AD). We assessed the distribution of clusterin immunoreactivity in cerebrovascular disorders, particularly focusing on white matter changes in small vessel diseases. Methods: Post‐mortem brain tissues from the frontal or temporal lobes of a total of 70 subjects with various disorders including cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), cerebral amyloid angiopathy (CAA) and AD were examined using immunohistochemistry and immunofluorescence. We further used immunogold electron microscopy to study clusterin immunoreactivity in extracellular deposits in CADASIL. Results: Immunostaining with clusterin antibodies revealed strong localization in arterioles and capillaries, besides cortical neurones. We found that clusterin immunostaining was significantly increased in the frontal white matter of CADASIL and pontine autosomal dominant microangiopathy and leukoencephalopathy subjects. In addition, clusterin immunostaining correlated with white matter pathology severity scores. Immunostaining in axons ranged from fine punctate deposits in single axons to larger confluent areas with numerous swollen axon bulbs, similar to that observed with known axon damage markers such as non‐phosphorylated neurofilament H and the amyloid precursor protein. Immunofluorescence and immunogold electron microscopy experiments showed that whereas clusterin immunoreactivity was closely associated with vascular amyloid‐β in CAA, it was lacking within the granular osmiophilic material immunolabelled by NOTCH3 extracelluar domain aggregates found in CADASIL. Conclusions: Our results suggest a wider role for clusterin associated with white matter damage in addition to its ability to chaperone proteins for clearance via the perivascular drainage pathways in several disease states
    corecore